1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
use crate::algorithms::eval_dynamic::processed_props::DataEncodingType;
use crate::sketchbook::ids::ObservationId;
use crate::sketchbook::observations::{Dataset, Observation, VarValue};
use crate::sketchbook::properties::HctlFormula;
use std::fmt::Write;
/// Encode a dataset of observations as a single HCTL formula. The particular formula
/// template is chosen depending on the type of data (attractor data, fixed-points, ...).
///
/// a) Fixed-point dataset is encoded with a conjunction of "steady-state formulas"
/// (see [mk_formula_fixed_point_list]) that ensures each observation correspond to a fixed point.
/// b) Attractor dataset is encoded with a conjunction of "attractor formulas"
/// (see [mk_formula_attractor_list]) that ensures each observation correspond to an attractor.
/// c) Trap-space dataset is encoded with a conjunction of "trap-space formulas"
/// (see [mk_formula_trap_space_list]) that ensures each observation correspond to a trap space.
/// d) Time-series dataset is encoded with a "reachability chain" formula,
/// (see [mk_formula_reachability_chain]) ensuring there is path between each consecutive observations.
pub fn encode_dataset_hctl_str(
dataset: &Dataset,
observation_id: Option<ObservationId>,
category: DataEncodingType,
) -> Result<String, String> {
let var_names = dataset
.variables()
.iter()
.map(|v| v.to_string())
.collect::<Vec<String>>();
let encoded_observations = if let Some(obs_id) = observation_id {
let observation = dataset.get_obs(&obs_id)?;
vec![encode_observation_str(observation, &var_names)?]
} else {
let observations = dataset.observations();
encode_multiple_observations_str(observations, &var_names)?
};
match category {
DataEncodingType::Attractor => Ok(mk_formula_attractor_list(&encoded_observations)),
DataEncodingType::FixedPoint => Ok(mk_formula_fixed_point_list(&encoded_observations)),
DataEncodingType::TrapSpace => Ok(mk_formula_trap_space_list(&encoded_observations)),
DataEncodingType::TimeSeries => Ok(mk_formula_reachability_chain(&encoded_observations)),
}
}
/// Encode an observation by a (propositional) formula depicting the corresponding state/sub-space.
/// The observation's binary values are used to create a conjunction of literals.
/// The `var_names` are used as propositions names in the formula.
pub fn try_encode_observation(
obs: &Observation,
var_names: &[String],
) -> Result<HctlFormula, String> {
let formula = encode_observation_str(obs, var_names)?;
HctlFormula::try_from_str(&formula)
}
/// Encode each of the several observations, one by one.
/// For details, see [try_encode_observation].
pub fn try_encode_multiple_observations(
observations: &[Observation],
var_names: &[String],
) -> Result<Vec<HctlFormula>, String> {
let formulae = encode_multiple_observations_str(observations, var_names)?;
formulae
.iter()
.map(|f| HctlFormula::try_from_str(f))
.collect::<Result<Vec<HctlFormula>, String>>()
}
/// Encode binarized observation with a formula depicting the corresponding state/sub-space.
/// Using binarized values and proposition names, creates a conjunction of literals
/// describing that observation.
///
/// `00*1*1` would end up like `!v1 & !v2 & v4 & v6`
fn encode_observation_str(
observation: &Observation,
prop_names: &[String],
) -> Result<String, String> {
if observation.num_values() != prop_names.len() {
return Err("Numbers of observation's values and propositions differs.".to_string());
}
let formula: String = prop_names
.iter()
.enumerate()
.filter_map(|(i, prop)| match observation.get_values()[i] {
VarValue::True => Some(prop.to_string()),
VarValue::False => Some(format!("~{prop}")),
VarValue::Any => None,
})
.collect::<Vec<_>>()
.join(" & ");
// if observation corresponds to the whole space (all vars are '*'), we just use 'true'
let final_formula = if formula.is_empty() {
"(true)".to_string()
} else {
format!("({})", formula)
};
Ok(final_formula)
}
/// Encode several observation vectors with conjunction formulae, one by one.
/// Also see [encode_observation_str] for details.
fn encode_multiple_observations_str(
observations: &[Observation],
prop_names: &[String],
) -> Result<Vec<String>, String> {
observations
.iter()
.map(|o| encode_observation_str(o, prop_names))
.collect::<Result<Vec<String>, String>>()
}
/// Create HCTL formula describing that given specific state is part of an attractor.
///
/// > `EXISTS x. JUMP x. ({state} & AG EF {state})`
///
/// Arg `attractor_state` is a formula encoding the state of interest.
/// The state must be fully specified (conjunction of literals for EACH proposition).
pub fn mk_formula_attractor_specific(attractor_state: &str) -> String {
assert!(!attractor_state.is_empty());
format!("(3{{x}}: (@{{x}}: ({attractor_state} & (AG EF ({attractor_state})))))")
}
/// Create HCTL formula describing that given sub-space (observation) must contain a state
/// that is part of an attractor.
///
/// This function works for sub-spaces in general, but if you have a singleton sub-space
/// (a state), we recommend using [mk_formula_attractor_specific] - is more optimized).
///
/// > `EXISTS x. JUMP x. ({state} & (AG EF ({state} & x)))`
///
/// Arg `attractor_state` is a formula encoding the sub-space with the state of interest.
pub fn mk_formula_attractor(attractor_state: &str) -> String {
assert!(!attractor_state.is_empty());
format!("(3{{x}}: (@{{x}}: ({attractor_state} & (AG EF ({attractor_state} & {{x}})))))")
}
/// Create HCTL formula describing that each sub-space (observation) in a list must contain
/// a state that is part of an attractor.
/// It is essentially a conjunction of "attractor formulas" (see [mk_formula_attractor]).
///
/// > `ATTRACTOR({state1}) & ... & ATTRACTOR({stateN})`
///
/// Arg `attractor_state_list` is a vector of formulae, each encoding a sub-space
/// (conjunction of literals).
pub fn mk_formula_attractor_list(attractor_state_list: &[String]) -> String {
assert!(!attractor_state_list.is_empty());
let formula = attractor_state_list
.iter()
.map(|attractor_state| mk_formula_attractor(attractor_state))
.collect::<Vec<_>>()
.join(" & ");
format!("({})", formula)
}
/// Create HCTL formula that prohibits existence of any attractor apart from the ones
/// that contain some states from some of the specified sub-spaces (observations).
///
/// > `! EXISTS x. JUMP x. !(AG EF ({state1} | ... | {stateN}))`
///
/// Arg `attractor_state_list` is a vector of formulae, each describing a state in particular
/// allowed attractor (conjunction of literals).
pub fn mk_formula_forbid_other_attractors(attractor_state_list: &[String]) -> String {
assert!(!attractor_state_list.is_empty());
let inner_disjunction = attractor_state_list
.iter()
.map(|attractor_state| format!("({attractor_state})"))
.collect::<Vec<_>>()
.join(" | ");
format!("~(3{{x}}: (@{{x}}: ~(AG EF ({}))))", inner_disjunction)
}
/// Create HCTL formula describing that 1) each sub-space (observation) in a list must contain
/// a state that is part of an attractor and 2) prohibits existence of any additional attractor
/// that does not contain a state from some of these sub-spaces.
///
/// Basically a conjunction of two formulas, see [mk_formula_attractor_list] and
/// [mk_formula_forbid_other_attractors] for details.
///
/// > `ALL_ATTRACTORS({states}) & NO_OTHER_ATTRACTORS({states})`
pub fn mk_formula_exclusive_attractors(attractor_state_list: &[String]) -> String {
assert!(!attractor_state_list.is_empty());
let first_part = mk_formula_attractor_list(attractor_state_list);
let second_part = mk_formula_forbid_other_attractors(attractor_state_list);
format!("({first_part} & {second_part})")
}
/// Create a formula describing that a sub-space (observation) is a trap space.
///
/// > `FORALL x. JUMP x. ({sub_space} => ~(EX ~({sub_space})))`
///
/// Argument `sub_space` is a formula describing the sub-space of interest.
pub fn mk_formula_trap_space(sub_space: &str) -> String {
assert!(!sub_space.is_empty());
format!("(V{{x}}: (@{{x}}: ({sub_space} => ~(EX ~({sub_space})))))")
}
/// Create a formula describing that each sub-space (observation) in a given list is a trap space.
/// It essentially is a conjunction of "trap-space formulas" (see [mk_formula_trap_space]).
///
/// > `TRAP_SPACE({space1}) & ... & TRAP_SPACE({spaceN})`
pub fn mk_formula_trap_space_list(sub_spaces_list: &[String]) -> String {
assert!(!sub_spaces_list.is_empty());
let formula = sub_spaces_list
.iter()
.map(|sub_space| mk_formula_trap_space(sub_space))
.collect::<Vec<_>>()
.join(" & ");
format!("({})", formula)
}
/// Create HCTL formula describing that given state is a steady state (fixed-point).
///
/// > `EXISTS x. JUMP x. ({state} & AX {state})`
///
/// Arg `steady_state` is a formula encoding the state of interest.
/// The state must be fully specified (conjunction of literals for EACH proposition).
pub fn mk_formula_fixed_point_specific(steady_state: &str) -> String {
assert!(!steady_state.is_empty());
format!("(3{{x}}: (@{{x}}: ({steady_state} & (AX ({steady_state})))))")
}
/// Create HCTL formula describing that given sub-space (observation) must contain a steady
/// state (fixed-point).
///
/// This function works for sub-spaces in general, but if you have a singleton sub-space
/// (a state), we recommend using [mk_formula_fixed_point_specific] - is more optimized).
///
/// > `EXISTS x. JUMP x. ({state} & (AX ({state} & x)))`
///
/// Arg `steady_state` is a formula encoding the sub-space with the state of interest.
pub fn mk_formula_fixed_point(steady_state: &str) -> String {
assert!(!steady_state.is_empty());
format!("(3{{x}}: (@{{x}}: ({steady_state} & (AX ({steady_state} & {{x}})))))")
}
/// Create HCTL formula describing that each sub-space (observation) in a list must contain
/// a steady state (fixed-point).
/// It is essentially a conjunction of "fixed-point formulas" (see [mk_formula_fixed_point]).
///
/// > `FIXED_POINT({state1}) & ... & FIXED_POINT({stateN})`
pub fn mk_formula_fixed_point_list(steady_state_list: &[String]) -> String {
assert!(!steady_state_list.is_empty());
let formula = steady_state_list
.iter()
.map(|steady_state| mk_formula_fixed_point(steady_state))
.collect::<Vec<_>>()
.join(" & ");
format!("({})", formula)
}
/// Create HCTL formula that prohibits existence of any steady state apart from the ones
/// that contained in the specified sub-spaces (observations).
///
/// > `! EXISTS x. JUMP x. (!{state1} & ... & !{stateN} & (AX x)))`
///
/// Arg `steady_state_list` is a vector of formulae, each encoding particular allowed state.
pub fn mk_formula_forbid_other_fixed_points(steady_state_list: &[String]) -> String {
assert!(!steady_state_list.is_empty());
let inner_conjunction = steady_state_list
.iter()
.map(|steady_state| format!("~({})", steady_state))
.collect::<Vec<_>>()
.join(" & ");
format!("~(3{{x}}: (@{{x}}: {} & (AX {{x}})))", inner_conjunction)
}
/// Create HCTL formula describing that 1) each sub-space (observation) in a list must contain
/// a steady state and 2) prohibits existence of any additional steady states outside of these
/// sub-spaces.
///
/// Basically a conjunction of two formulas, see [mk_formula_fixed_point_list] and
/// [mk_formula_forbid_other_attractors] for details.
///
/// > `FIXED_POINTS({states}) & NO_OTHER_FIXED_POINTS({states})`
///
/// Arg `steady_state_list` is a vector of formulae, each encoding one state of interested.
pub fn mk_formula_exclusive_fixed_points(steady_state_list: &[String]) -> String {
assert!(!steady_state_list.is_empty());
let first_part = mk_formula_fixed_point_list(steady_state_list);
let second_part = mk_formula_forbid_other_fixed_points(steady_state_list);
format!("({first_part} & {second_part})")
}
/// Create HCTL formula describing that there is (not) a path between (any) states of two
/// sub-spaces.
///
/// > positive: `EXISTS x. JUMP x. {from_state} & EF {to_state}`
/// > negative: `EXISTS x. JUMP x. {from_state} & !EF {to_state}`
///
/// `from_state` and `to_state` are both formulae encoding particular sub-spaces.
/// `is_negative` is true iff we want to encode non-existence of path.
pub fn mk_formula_reachability_pair(from_state: &str, to_state: &str, is_negative: bool) -> String {
assert!(!to_state.is_empty() && !from_state.is_empty());
if is_negative {
return format!("(3{{x}}: (@{{x}}: {from_state} & (~EF ({to_state}))))");
}
format!("(3{{x}}: (@{{x}}: {from_state} & EF ({to_state})))")
}
/// Create a formula describing the existence of path between any states of every two consecutive
/// sub-spaces from the `states_sequence`, starting with the first one.
///
/// Basically, this can be used to describe a time series s0 -> s1 -> ... -> sN
///
/// > `EXISTS x. JUMP x. ({state1} & EF ({state2} & EF( ... )))`
pub fn mk_formula_reachability_chain(states_sequence: &[String]) -> String {
let num_states = states_sequence.len();
assert!(num_states > 0);
let mut chain = String::new();
for state in states_sequence.iter().take(num_states - 1) {
write!(chain, "({}) & EF (", state).unwrap();
}
let final_state = &states_sequence[num_states - 1];
let parentheses = ")".repeat(num_states - 1);
write!(chain, "{}{}", final_state, parentheses).unwrap();
format!("(3{{x}}: (@{{x}}: {}))", chain)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::sketchbook::observations::Observation;
#[test]
/// Test encoding of an observation.
fn test_observation_encoding() {
let prop_names = vec![
"a".to_string(),
"b".to_string(),
"c".to_string(),
"d".to_string(),
"e".to_string(),
];
let obs1 = Observation::try_from_str("001*1", "o1").unwrap();
let encoded1 = "(~a & ~b & c & e)";
assert_eq!(
encode_observation_str(&obs1, &prop_names).unwrap(),
encoded1
);
let obs2 = Observation::try_from_str("001**", "o2").unwrap();
let encoded2 = "(~a & ~b & c)";
assert_eq!(
encode_observation_str(&obs2, &prop_names).unwrap(),
encoded2
);
let obs3 = Observation::try_from_str("*****", "o3").unwrap();
let encoded3 = "(true)";
assert_eq!(
encode_observation_str(&obs3, &prop_names).unwrap(),
encoded3
);
let multiple_encoded =
encode_multiple_observations_str(&vec![obs1, obs2, obs3], &prop_names).unwrap();
assert_eq!(multiple_encoded, vec![encoded1, encoded2, encoded3]);
}
#[test]
/// Test generating different kinds of general attractor formulae.
fn test_attractor_encodings() {
let attr_states = vec!["a & b & ~c".to_string(), "a & b & c".to_string()];
assert_eq!(
&mk_formula_attractor_specific(&attr_states[0]),
"(3{x}: (@{x}: (a & b & ~c & (AG EF (a & b & ~c)))))",
);
assert_eq!(
&mk_formula_attractor(&attr_states[0]),
"(3{x}: (@{x}: (a & b & ~c & (AG EF (a & b & ~c & {x})))))",
);
assert_eq!(
&mk_formula_forbid_other_attractors(&attr_states),
"~(3{x}: (@{x}: ~(AG EF ((a & b & ~c) | (a & b & c)))))",
);
assert_eq!(
&mk_formula_attractor_list(&attr_states),
"((3{x}: (@{x}: (a & b & ~c & (AG EF (a & b & ~c & {x}))))) & (3{x}: (@{x}: (a & b & c & (AG EF (a & b & c & {x}))))))",
);
assert_eq!(
&mk_formula_exclusive_attractors(&attr_states),
"(((3{x}: (@{x}: (a & b & ~c & (AG EF (a & b & ~c & {x}))))) & (3{x}: (@{x}: (a & b & c & (AG EF (a & b & c & {x})))))) & ~(3{x}: (@{x}: ~(AG EF ((a & b & ~c) | (a & b & c))))))",
);
}
#[test]
/// Test generating formulas for trap spaces.
fn test_trap_space_encodings() {
let sub_spaces = vec!["a & b & ~c".to_string(), "a & b & c".to_string()];
let expected_formula = "(V{x}: (@{x}: (a & b & ~c => ~(EX ~(a & b & ~c)))))";
assert_eq!(&mk_formula_trap_space(&sub_spaces[0]), expected_formula,);
let expected_formula = "((V{x}: (@{x}: (a & b & ~c => ~(EX ~(a & b & ~c))))) & (V{x}: (@{x}: (a & b & c => ~(EX ~(a & b & c))))))";
assert_eq!(mk_formula_trap_space_list(&sub_spaces), expected_formula);
}
#[test]
/// Test generating of different kinds of steady-state formulae.
fn test_fixed_point_encodings() {
let attr_states = vec!["a & b & ~c".to_string(), "a & b & c".to_string()];
assert_eq!(
&mk_formula_fixed_point_specific(&attr_states[0]),
"(3{x}: (@{x}: (a & b & ~c & (AX (a & b & ~c)))))",
);
assert_eq!(
&mk_formula_fixed_point(&attr_states[0]),
"(3{x}: (@{x}: (a & b & ~c & (AX (a & b & ~c & {x})))))",
);
assert_eq!(
&mk_formula_forbid_other_fixed_points(&attr_states),
"~(3{x}: (@{x}: ~(a & b & ~c) & ~(a & b & c) & (AX {x})))",
);
assert_eq!(
&mk_formula_fixed_point_list(&attr_states),
"((3{x}: (@{x}: (a & b & ~c & (AX (a & b & ~c & {x}))))) & (3{x}: (@{x}: (a & b & c & (AX (a & b & c & {x}))))))",
);
assert_eq!(
&mk_formula_exclusive_fixed_points(&attr_states),
"(((3{x}: (@{x}: (a & b & ~c & (AX (a & b & ~c & {x}))))) & (3{x}: (@{x}: (a & b & c & (AX (a & b & c & {x})))))) & ~(3{x}: (@{x}: ~(a & b & ~c) & ~(a & b & c) & (AX {x}))))",
);
}
#[test]
/// Test generating reachability formulae.
fn test_reachability_encoding() {
let states = vec![
"a & b & ~c".to_string(),
"a & b & c".to_string(),
"~a & b & c".to_string(),
];
assert_eq!(
&mk_formula_reachability_pair(&states[0], &states[1], true),
"(3{x}: (@{x}: a & b & ~c & (~EF (a & b & c))))",
);
assert_eq!(
&mk_formula_reachability_pair(&states[0], &states[1], false),
"(3{x}: (@{x}: a & b & ~c & EF (a & b & c)))",
);
assert_eq!(
&mk_formula_reachability_chain(&states),
"(3{x}: (@{x}: (a & b & ~c) & EF ((a & b & c) & EF (~a & b & c))))",
);
}
}